Как работает мобильный телефон

Для большинства из нас мобильный телефон давно уже стал неотъемлемой частью жизни, однако наверняка многие из вас задавались вопросом, о том каким образом вы можете звонить с мобильника или о том почему существуют разные поколения мобильной связи.

Как устроена сотовая связь

Давайте рассмотрим, что из себя представляет технология мобильной связи. Когда вы говорите по телефону, звук вашего голоса улавливается мембраной встроенного микрофона. Микрофон преобразует ваш голос в цифровой сигнал, с помощью МЭМС датчика и интегральное микросхемы.

Цифровой сигнал представляет собой ваш голос зашифрованный в виде последовательности нулей и единиц, а встроенная антенна принимает эти нули и единицы преобразуя их в электромагнитные волны. В электромагнитных волнах последовательность нулей и единиц представлены меняющимися характеристиками волны, такими как амплитуда, частота, фаза или их комбинацией. Например, в случае с частотой, 0 и 1 передаются посредством использования низких и высоких частот соответственно.

Если найти способ передачи этих электромагнитных волн на мобильный телефон вашего друга, вы сможете с ним говорить. Однако электромагнитные волны не способны преодолевать большие расстояния. Они теряют свою силу из-за препятствий, физических объектов, электрооборудования и некоторых факторов окружающей среды и даже, если бы этих проблем не было, электромагнитные волны не могут достичь всех точек поверхности земли поскольку она изогнута.

Чтобы решить эти проблемы используется технология сотовой связи, которая задействует сеть вышек. Эта технология подразумевает деление географической зоны на шестиугольные ячейки или соты, в каждой из которых устанавливается вышка со своим частотным интервалом. Как правило, эти вышки соединены между собой оптоволоконным кабелем. Такие оптоволоконные кабели проложены под землей или по дну океанов и обеспечивают национальную и международную связь.

Вышка вашей ячейки принимает электромагнитные волны посылаемые вашим телефоном и преобразует их в высокочастотные световые импульсы. Эти световые импульсы доставляются к приёмо-передатчику расположенному у основания вышки для дальнейшей обработки сигнала. После обработки сигнал вашего голоса направляется к принимающей вышки, а та в свою очередь ретранслирует полученные световые импульсы в форме электромагнитных волн, которые принимает антенна телефона вашего друга. Далее проходит процесс обратной переработки сигнала и ваш друг слышит ваш голос. И так получается, что мобильная связь не является полностью беспроводной, в ее обеспечении также участвует проводная связь, так устроена сотовая связь.

Центр коммутации мобильной связи

Однако есть вопрос, который мы пока не затрагивали. Сотовая связь действует только тогда, когда сигнал с вышки в вашем районе транслируется на вышку ближайшую к местонахождению вашего друга, но как ваша вышка узнает в какой ячейке он сейчас находится, и на какую вышку направлять сигнал. Для того, чтобы это произошло вышка сотовой связи должна получить помощь от так называемого “Центра коммутации мобильной связи” (MSC). Центр коммутации является связующим компонентом группы вышек сотовой связи, прежде чем двинуться дальше давайте подробнее разберем функции центра коммутации.

При покупке sim-карты вся информация об абоненте регистрируется в некотором центре коммутации, назовем этот центр домашним. Домашний MSC хранит информацию об абоненте, такую как тарифный план, текущее местоположение и статус активности. Если вы выходите за пределы своего домашнего центра, вас начинает обслуживать новый, который мы назовем гостевым центром коммутации. Когда вы входите в зону гостевого центра, он связывается с вашим домашним MSC, таким образом ваш домашний центр всегда знает в какой зоне вы находитесь.

Чтобы понять в какой из ячеек связанные с данным MSC находится абонент, центр коммутации использует несколько методов:

  1. Один из них постоянное обновление информации о положении абонента через определенный промежуток времени.
  2. Также обновление выполняется, если мобильное устройство пересекает заранее определенное количество ячеек.
  3. Наконец, обновление данных о местоположении происходит при включении мобильного телефона. Давайте разберем все три случая на примере.

Предположим Анель хочет позвонить Роме. Когда Анель набирает номер, запрос на вызов поступает на ее домашний центр коммутации, после получения информации о номере Ромы, запрос будет отправлен на его домашний центр, затем следует проверка текущего MSC Ромы.

Если Рома находится в зоне своего домашнего центра, запрос вызова будет немедленно отправлен на ближайшую к его местоположению вышку с целью первичной проверки, активен ли его телефон или не занят ли он разговором с другим абонентом.

Если все в порядке, телефон Ромы зазвонит и начнется разговор. Однако если Рома находится вне зоны своего домашнего MSC, то его домашний центр коммутации просто перенаправляет запрос вызова на гостевой центр. Гостевой центр коммутации следуя ранее описанной процедуре определит местоположение телефона Ромы, после чего установятся соединение.

Частотный спектр и мобильная связь

Теперь давайте обсудим, почему частотный спектр очень важен для мобильной связи. Для передачи последовательности нулей и единиц посредством цифровой связи, каждому абоненту выделяется частотный диапазон, однако частотный спектр сотовой связи весьма ограничен, при том что пользуются ей миллиарды абонентов.

Эта проблема решается с помощью двух методов. Первый, распределение частотного интервала и второй  технология множественного доступа. В первом случае подразумевается четкое распределение разных частотных интервалов по разным вышкам сотовой связи, а технология множественного доступа заключается в эффективном распределение частотного интервала среди всех активных пользователей в ячейке.

Чем отличаются поколения мобильной связи

Технология 1G позволила абонентам связываться по телефону без подключенного к нему провода, но у этого поколения было две проблемы: первая заключалась в том, что беспроводная передача велась в аналоговом формате. Аналоговый сигнал может быть легко искажен помехами, поэтому его качество и безопасность были очень низкими. Вторая проблема заключалась в использовании технологии FDMA множественный доступ с разделением каналов по частоте. Доступный частотный спектр при нём используются неэффективно. Эти негативные факторы стали причиной появления мобильной связи второго поколения.

В мобильной связи 2G использовались цифровые технологии множественного доступа с разделением по времени TDMA или с кодовым разделением CDMA. Второе поколение также представила революционную услугу передачи данных SMS и доступа в интернет.

Технология 3G была нацелена на повышение скорости передачи данных. Для этого наряду с увеличением пропускной способности использовалась технология W-CDMA широкополосный множественный доступ с кодовым разделением. В результате была получена скорость 2 Мбита в секунду, что позволило передавать данные для таких целей как GPS, видео, голосовые вызовы и тому подобное. С появлением этой технологии мобильные телефоны стали быстро вытесняться смартфонами.

Затем появилась технология 4G, которая позволила достичь скорости передачи данных от 20 до 100 Мбит в секунду, этого было достаточно для просмотра фильмов с высоким разрешением и телевидения. Более высокая скорость стала возможной благодаря технологиям OFDM и MIMO. MIMO задействует одновременно несколько передающих и принимающих антенн, как в мобильном телефоне так и на вышки сотовой связи.

Следующее поколение мобильной связи 5G, которая будет внедрена в скором будущем, будет использовать усовершенствованную технологию MIMO и миллиметровые волны. Это сделает возможной бесперебойную связь для так называемого интернета вещей, обеспечивающего функционирование беспилотных автомобилей и умных домов.

Оцените статью
Все о технологиях, мобильных приложениях и тарифах на связь